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Abstract Motivated to examine the effectiveness of

the Black-Litterman model and find a more practical

model for portfolio optimization, we extend our previ-

ous paper on the comparison of three risk measures:

variance, expected shortfall and factor model covari-

ance. We collected investors’ views from analysts’ re-

ports and incorporated them into the market views to ob-

tain our posterior returns and conducted the Markowitz

portfolio optimization with the risk measures. By tun-

ing the constraints and parameters over the period of

2010 to 2014, we showed that the implementation of

the BL model helps enhance the portfolio performance

and the outperformance is consistent throughout all of

the three risk measures for 2014-2018. Therefore, our

paper makes a contribution by providing a quantita-

tive approach of obtaining investor’s views. We found

an empirical evidence of the effectiveness of the Black-

Litterman model, which advocates for the application of

the Black-Litterman model for portfolio management in

the financial industry.

1 Introduction
In the previous paper, we were motivated by

the uncertainty in the effectiveness of different risk
measures across time and sectors. Hence, we stud-
ied variance, conditional value at risk (CVaR) and
factor model covariance, and applied them in the
mean-risk models for portfolio optimization. By
examining the best-performing risk measure for
both recession periods and recovery periods, we
show that CVaR with restrictive constraints on
asset weight holdings may be a better option for
preventing huge losses during recession periods for
companies in the technology sector.

Markowitz proposed the use of simple variance
from historical returns as a risk measure to find
an optimal portfolio, but unfortunately, the model

has some shortcomings, such as its tendency to as-
sign extreme portfolio weights or its high sensitiv-
ity to inputs. This proved to negatively impact
our portfolio allocation, as shown by our previ-
ous results, in which our portfolios underperformed
the benchmark portfolio, especially when optimiz-
ing the portfolio under more lax constraints. We
observed that this occurred not just during times
of crises, but in almost all the time periods we ex-
amined.

One way to address these issues is by using the
Black-Litterman framework. Markowitz is sen-
sitive to input parameters, which means that a
small change in the expected return of one stock
will drastically change the weights on the stocks.
Therefore, using Black-Litterman to obtain the ex-
pected return vector will provide better and more
stable input estimates and in turn stabilize the
weights assigned to the assets in the portfolio.
This will prevent the optimization model from
making drastic, counter-intuitive shifts in portfolio
weights, which was what we had seen in our previ-
ous paper. Additionally, since the expected returns
generated by the Black-Litterman model include
analyst consensus, they are also more forward-
looking and reliant on historical data, which can
be especially useful during times of turmoil.

In this paper, we continue studying the perfor-
mance of risk measure but instead of simply using
the historical expected return in the mean-variance
optimization, we add an additional step of using
the Black-Litterman framework to generate a dif-
ferent expected return vector that takes analyst
views as well as our confidence in those views into
account.

The paper is structured as follows. In Section 2,
we survey the development of the Black Litterman
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model and discusses our potential contributions to
the literature. Section 4 contains a description of
the data and how we collect and process the data.
Section 5 and Section 6 detail the constructions of
posterior views in the BL model and the mean-
risk models with three different risk measures in
addition to the tuning process. Section 7 reports
and explains the empirical result of optimization
models for each risk measure with the BL model
over the period of 2014-2018. Section 8 summarizes
our conclusions from the results and outlines some
possible extensions.

2 Literature Review
As shown in our last project, Markowitz port-

folio optimization is sensitive to input parame-
ters and creates highly concentrated portfolios if
there is no constraint on the portfolio concentra-
tion. Suggested by Best and Grauer (1991) and
Chopra and Ziemba (2013), marginal changes in
expected returns can lead to large variations of the
optimal weights, while the weights are less sen-
sitive to variances and covariances. To mitigate
the drawbacks of the traditional Markowitz port-
folio optimization, Black and Litterman (1992) in
Goldman-Sachs developed Black-Litterman (BL)
model that combines the expected returns with in-
vestors’ prior views. Lee (2000) showed that the
BL model largely mitigates the problem of estima-
tion error-maximization in the MV optimization by
spreading errors throughout expected returns.

Due to the intuitive portfolio composition, the
BL model has been accepted in a considerate
amount of academic studies. However, it is not
widely applied as expected since Black and Litter-
man (1992) did not include instructions on con-
structing the covariance matrix of the views. A
number of papers attempted to clarify on the
derivation of the estimates and provide step-by-
step recipes and guidance on how to derive the un-
certainty of views and the investor views (Meucci,
2010; Satchell and Scowcroft, 2000). He and Litter-
man (1999) provided examples to show the differ-
ence between the BL optimization process rather
than the mathematics behind them. Mankert
(2006) applied mathematical and behavioural ap-
proaches to the BL model to generate better knowl-
edge and examples.

Further extensions and improvements of the BL
model have been suggested in the literature. One
of the strong assumptions of the Black-Litterman
model is the normality of the random return vec-
tor. Satchell and Scowcroft (2000) extended the
approach of the BL model to the second moments
of distribution. Moreover, Meucci (2006) extended
to the non-normal distribution on returns and con-
siders heavy tails for other types of asset classes
such as hedge funds and derivatives. Martellini and
Ziemann (2007) extend the BL model by consider-
ing 4-moment-CAPM model instead of the stan-
dard CAPM model for the estimation of the mar-
ket neutral implied views.

In addition, literature has explored on addi-
tional ways to establish investors’ views. Fabozzi
et al. (2006) combined a cross-sectional momen-
tum strategy with market equilibrium using the
BL model in the mean-variance framework. Jones
et al. (2007) adopted Fama French factor models
and the momentum factor to obtain views. The BL
model has been generalized using an interpretation
as an inverse optimization problem so mean and co-
variance of the returns are determined through a
conic program.

Studies have explained ways to assess views but
provided relatively limited empirical evidence that
the BL model generates a superior portfolio perfor-
mance relative to MV portfolio and passive portfo-
lio management. Therefore, our work to compare
the BL model’s posterior returns to the histori-
cal returns can effectively examine the performance
of BL model. Meanwhile, based on our research,
few studies have compared different risk measures
based on the construction of the BL model. Hence,
by combining our first project on different risk mea-
sure comparison, we can contribute to the litera-
ture by analyzing and finding the best performing
combination of risk measure and return estimates.

3 Black-Litterman Model
With the Black-Litterman model, we can obtain

a conditional distribution of returns by combining
the market information and investors’ views. It is
assumed that investors have prior views regarding
the returns of portfolios specified in matrix A.

The following is a list of notations we use in the
BL model for reference, which is consistent with
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the lecture slides.

µ′′ = the expected return vector that incorporates

market and investors’ views

µ′ = the expected returns of views

r = a vector of asset returns

T = number of samples

V = non-singular covariance matrix of excess ret

computed from historical returns

Σ = non-singular covariance matrix of historical ex-

pected excess returns (sample average)

b = forecast return expectations

U = covariance matrix of the views

W = covariance matrix of the posterior view

For definiteness, let µ̂ = 1
T

∑T
t=1 r

(t) be the average
of T sample returns, so it is based on returns since
the trend started. Assumed that the returns rt

follow a Gaussian distribution N(µ∗, V ). Hence,
µ̂ follows N(µ∗,Σ), where Σ = 1

T V . The density
function is

fµ(µ̂) =
exp(−1

2(µ̂− µ)TΣ−1(µ̂− µ))

(2π)
n
2 |Σ|

1
2

(1)

In the Bayesian theory, P (H|E) = P (E|H)P (H)
P (E) so

P (H|E) is the conditional probability of H given E
equals the probability of a correct view given prior
information about historical returns. Hence, in the
Bayesian setting, the distribution of posterior view
in BL model is g(θ)fθ(z), which is obtained by mul-
tiplying prior distribution by the likelihood func-
tion of specific observations.

3.1 Views as linear equations

Let A be the matrix whose row is αTi , which
specifies a particular portfolio in which we have a
belief and A is m × n matrix with m views and n
stocks. So αTi µ = bi for i from 1 to m view, which
is Aµ = b. Given that Aµ follows a Gaussian dis-
tribution, our view b ∼ N(b, U). Hence the density
function is b = 1

(2π)
n
2 |U |

1
2

exp(−1
2(b−b)TU−1(b−b)).

Substituting Aµ for b and discarding the constant

term, we obtain the prior distribution which is

g(µ) = exp(−1

2
(Aµ− b)U−1(Aµ− b)). (2)

Following the Bayesian method, for specific obser-
vation µ̂′ of µ̂, the posterior distribution is

g(µ)fµ(µ̂′) = exp(−1

2
(Aµ− b)U−1(Aµ− b)

− 1

2
(µ̂′ − µ)TΣ−1(µ̂′ − µ))

= C exp(−1

2
(µ− µ′′)TW−1(µ− µ′′))

(3)

where W is the covariance matrix of view b and

W = (ATU−1A+ Σ−1)−1 (4)

C = exp(b
T
U−1b+ ((µ̂′)TV −1µ̂′ − (µ′′)Tµ′′) and

µ′′ = W (ATU−1b+ Σ−1µ̂′) (5)

Since the posterior distribution is proportional
to the Gaussian distribution with µ′′ and covari-
ance matrix W , we use µ′′ as our returns in
Markowitz optimization.

3.2 Covariance matrix of views
Since the covariance matrix for the portfolios is

m×m matrix AV AT , if the views are equally cer-
tain in each of the m views, uncertainty in the in-
vestors’ views can be expressed as

U = λAV AT (6)

for some positive scalar λ. In Meucci (2009)’s book,
λ = 1

c −1, and he shows that c = 1
2 represents that

the investors are trusted as much as the official
market.

Based on Meucci (2010)’s work, the best guess
of the portfolio’s return during the holding period

bi = (η̂′)Tαi + κi

√
αTi V αi (7)

where η̂′ is the expected return vector computed
from samples and ki is a constant chosen by us.
As suggested by Meucci (2010), the parameter
ki ∈ {±1,±2}, representing the magnitude of the
investors’ views.
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The number of analysts’ forecasts is linked to
the view confidence matrix. Following Becker and
Gürtler (2010)’s approach to obtaining the confi-
dence matrix, we let the maximum number of an-
alyst’ forecasts that are given over the whole time
period have a confidence probability of 100%. If
there is no forecast of asset i at time t, the con-
fidence probability would be 0%. Therefore, the
confidence probability is based on the number of
analysts’ forecasts for each asset i at time t, in the
range of 0% and 100%.

After calculating b and substituting U into W ,
we can obtain the uncertainty matrix from views
and hence the expected return matrix µ′′ for opti-
mization.

4 Data Collection & Processing
Using the same set of stock prices dataset as in

our first project, we have a total of 37 companies
that are listed in the information technology sector
of the S&P 500 index. The weekly factor returns
data used in our macroeconomic factor model are
obtained from Fama and French’s website1. We
then merged the weekly stock prices of those 37
companies with the Fama and French’s 3 factors.

The views are manually collected from analyst
recommendations on Bloomberg Terminal. For
each stock, we recorded the majority consensus
amongst different analysts on whether to buy, hold,
or sell the stock. We also obtained the weekly 12-
month target prices for each stock, which are then
used to compute the size of the expected returns
corresponding to the views. The target prices are
set in relation to the spot price at the time of the
recommendation in order to get the expected fu-
ture return of our views.

Since the earliest analyst views available on
Bloomberg Terminal are in July 2010, we tune the
parameters and train our model from July 2010 to
August 2014. Among the 210 weeks, we use the
first 110 weeks to obtain historical covariance ma-
trix V , start trading and rebalancing biweekly from
week 110 to week 210; hence, the number of sam-
ples is 100 for our optimization. Then, we apply
the same process and test the performance of the

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.fre
nch/data library.html

tuned model during the 2014-2018 period in the
empirical analysis section.

5 BL Model Construction
We used analyst recommendations for the prior

view. For each stock i, we compared the number
of analyst recommendations and pick the majority.
If a majority of analysts recommend ‘buy’, we as-
sign the value 1 to Ai,i. If a majority of analysts
recommend ‘sell’, we assign the value -1 to Ai,i. If
a majority of analysts recommend ‘hold’ or if the
number of analysts that recommend ‘buy’ is equal
to the number of analysts that recommend ‘sell’,
we assign the value 0.005 to Ai,i. Ideally, we would
set the value to be 0, but instead, we chose the
small positive number 0.005 to prevent the result
from being a singular matrix. Note that A is a
diagonal matrix.

Next, we compute the matrix λ using the for-
mula λi,i = 1

ci
− 1 where ci is a positive scalar,

as suggested by Meucci (2009). When c → 0, the
investors’ views have no impact since there is an in-
finitely disperse distribution of views. When c →
1, investors are trusted completely over the mar-
ket since there is an infinitely peaked distribution
of views. When c = 1

2 , investors are trusted as
much as the official market. For each stock i, we
used the proportion of analysts that agree with the
majority consensus to represent our confidence in
that view. We interpret c as the confidence proba-
bility such that it is between 0% and 100%. Hence,
calculate c for each i such that

ci =
Num. analysts agree with the consensus

Total number of analysts
(8)

Given that there are cases where either denom-
inator or numerator of c is 0, we decide to use a
different formula to calculate the value of λi,i. The
first case is when the numerator, the number of
analysts that agree with our chosen consensus, is
zero. This happens when half of the analysts rec-
ommend ‘buy’ and the other half of the analysts
recommend ‘sell’ so there are no analysts that rec-
ommend ‘hold’. In this case, to prevent singularity,
we set the value 0.5 to λi,i to represent our rela-
tive certainty in the view. The second case is when
all analysts agree with our consensus. Under this
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circumstance, we do not wish to express an abso-
lute certainty in this view, so we set λi,i to be 0.05
to represent a 5% uncertainty. Note that λ is a
diagonal matrix.

Next, we compute the vector µ̂′. We first calcu-
late the expected annual return using the 12-month
target price and then convert it to weekly returns
for each stock i using the formula below:

µ̂′i =
1

52
.
12-month target price− today’s price

today’s price
(9)

For parameter k in the Equation 7, according to
Meucci (2010), k ∈ {−β,−α, α, β} which defines
“very bearish”, “bearish”, “bullish”, “very bullish”
views respectively. Typical choices for those pa-
rameters are α = 1 and β = 2. Therefore, we
choose the vector k such that

ki =


1 if µ̂′i > 0

−1 if µ̂′i < 0

0.05 if µ̂′i = 0

(10)

We chose the small positive number 0.05 to express
some uncertainty in our views.

Using the values we obtained above, we calculate
µ′′ and use this as our expected return vector in our
optimization models.

6 Portfolio Optimization Con-
struction

For the risk-return portfolio optimization with
the Black-Litterman model, we use the following
objective function with respect to three different
risk measures.

maximize µTx (11)

for x the proportion of investment in each asset
and µ the expected return from each asset, which
is µ′′ obtained from the BL model.

We use the same set of constraints as in
the first project which includes constraints on
portfolio risk, transaction cost and its total
cost, changes in allocation, no borrowing, port-
folio holding limits, and turnover rate. For
CVaR, the portfolio risk constraint would be

` + 1
1−α

∑
w∈Ω p(w) max{loss(x,w) − `, 0} ≤

ESbenchmark.

xTV x ≤ allowable risk · σ2
benchmark

c

n∑
i=1

∣∣yi(t)∣∣ ≤ C
n∑
i=1

(x(t)) + C = 1

xi(t− 1) = yi(t) + xi(t)

x0 ≥ 0∣∣xi(t)−∆
∣∣ ≤ δ

n∑
i=1

∣∣xi(t)− xi(t− 1)
∣∣ ≤ c n∑

i=1

xi(t− 1)

(12)

Since we use an equally weighted benchmark
portfolio, we rebalance this portfolio by distribut-
ing a new level of wealth equally among all risky
assets and riskless asset after each trading date.
This portfolio’s risk can be calculated using the
following formula.

σbenchmark =
1

n+ 1
(

n∑
i=1

n∑
j=1

Vi,j)
1
2 (13)

Additionally, given that we use an equally-
weighted benchmark, in the holding limit con-
straint, we set δ = 1

n+1 where n is the number
of stocks in our portfolio. This is to prevent the
weights in our portfolio to deviate too much from
the benchmark.

6.1 Risk Measures

Following our previous project, we continue uti-
lizing the same three risk measures: variance,
CVaR, Factor model covariance matrix.

(14)Var = xTV x

ESα(x) =

min
`

(
`+

∑
w∈Ω p(w) max{loss(x,w)− `, 0}

1− α

)
(15)
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Factor model covariance matrix = BFBT + ∆
(16)

where x is the proportion of total wealth used to
buy assets, V is the n× n historical return covari-
ance matrix, p(w) is the probability of scenario w,
Ω is the finite set of scenarios, B is the matrix of
factor loadings, F is the covariance matrix of f
and ∆ is the diagonal matrix whose (i, i) entry is
var(εi).

6.2 Constraints and Parameter Tuning
To make our portfolio perform better during the

optimization process, we want to tune some essen-
tial parameters and constraints in our optimization
model on the training data set before we construct
our Black-Litterman portfolios. We first tune three
parameters on our test data set from July 2010 to
August 2014.
rate of decay: we first choose the relative

weight for one year earlier, r, meaning that the
weight assigned to the sample one year earlier is
r times the weight assigned to the most recent
sample. Then we calculate the rate of decay by
1− rsample frequency/52. We tune rate of decay by
tuning r for r ∈ [0.1, 0.5].
allowable risk: the allowable risk controls the

highest allowable risk of the optimizing portfolios.
We constrain our optimization model to be at most
as risky as allowable risk times the risk of the
benchmark portfolio. In CVaR portfolio optimiza-
tion, the allowable risk is used to calculate the
ESbenchmark, which denotes as β. For the tuning
range, allowable risk ∈ [1, 2].
α: when the allowable risk increases, for CVaR

portfolios, the pairing confidence level should de-
crease to protect the downside risk. So α is the
pairing risk parameter for allowable risk through
the optimization of our CVaR portfolios. We tune
alpha for α ∈ [0.9, 0.99].

To further improve the performance of our
Black-Litterman portfolios, we also tune our opti-
mization constraints and the parameters. Since the
constraints on the risk of the portfolio, its transac-
tion cost and its no borrowing nature are fixed, we
only tune constraints on the holding limits. More
specifically, the holding limit constraint limits the
weight on each risky asset so that it does not de-
viate too much from the equal weight. Hence, we

want to find the best weight intervals for risky as-
sets. In other words, we are trying to tune ∆ in the
holding limit constraint since we set δ = 1

n+1 . As
we do not want the weight on each risk asset too
large or too small, we make ∆ changeable between
[ 0.5
n+1 ,

2
n+1 ] where n is the number of risky assets.

As presented in Table 1, for each of our three risk
measures, we find the best combination of these
parameters through cross-validation on the perfor-
mance of our portfolios with the specific risk mea-
sure. We figure out the following best combinations
by comparing the final wealth, expected returns as
well as Sharpe ratios. The rate of decay r is the
highest for CVaR, which follows our expectation
and suggests that more weight is put on the recent
samples. The allowable risk is also the highest for
CVaR. The higher allowable risk is, the higher β
in CVaR is. Hence, the tuning output shows that
a high value of CVaR risk β with a high confidence
interval of 99% yields the best performance. The
potential reason for this combination is that we are
tuning our parameters during an economic boom-
ing time period (after the end of 2008 financial re-
cession) and hence it is intuitive that the allowable
risk is high for CVaR and the confidence level is
high as well.

Table 1: Best Parameter Combinations for Port-
folios with Different Risk Measures

Variance CVaR Factor

r 0.2778 0.5000 0.4111
allowable risk 1.4444 2.0000 1.5556
α N/A 0.9900 N/A
∆ 1

n+1
1

n+1
1

n+1

This table reports the best parameter combinations for the three
risk measures based on the highest expected returns and final
wealth. α for the covariance-matrix portfolio and the factor
model covariance-matrix portfolio is N/A as α is not needed
during the optimization process of the other two portfolios with
covariance and factor model covariance.

7 Empirical Analysis

After tuning our parameters and constraints on
our training data set, we use the best combinations
in the optimization of our Black-Litterman portfo-
lios with the three risk measures. We construct
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Figure 1: These figures show the wealth of CVaR, vari-
ance and factor model covariance portfolios during 2016-
2018. This plot suggests that the performance of portfolio
with Black-Litterman method and risk measures beats the
performance of both the Markowitz portfolio with risk mea-
sures and the equal-weighted benchmark portfolio. Among
all the risk measures, the implementation of the BL model
and factor model covariance performs the best with the high-
est return.

and optimize our portfolios from 2014 to 2018 by
using the first 110 weeks to obtain the histori-
cal covariance matrix, and trading and rebalanc-
ing biweekly during 2016-2018. Then we compare
their performances with the performances of clas-
sical Markowitz portfolios to examine if the Black-
Litterman method improves the returns of portfo-
lios and results in better portfolio performance.

As we can see the performance of the CVaR
portfolios on the top left of Figure 1, returns on
the portfolio constructed with the help of Black-
Litterman method is higher than the returns on
the benchmark portfolio and the usual CVaR port-
folio. Also, similar to the results in the previ-
ous project, the benchmark portfolio again outper-
forms the CVaR portfolio without the BL method.
Therefore, using the return vector from the Black-
Litterman method instead using the historical re-
turn vector in the optimization process helps en-
hance the performance and the return of CVaR
portfolio.

Similarly for historical covariance matrix, as
shown on the top right of Figure 1, with the com-
bination of investors’ views and market views, the
returns on the portfolio outperforms the equal-
weighted benchmark portfolio and the classical
Markowitz portfolio. For factor model covariance,
the BL model also slightly performs better than
the benchmark portfolio. Therefore, we can see
that incorporating investors’ views into the portfo-
lio optimization will yield higher returns across all
risk measures, and beat the equal-weighted bench-
mark portfolio.

The Table 2 reports the rate of return, Sharpe
ratio and standard deviation of portfolios under
different risk measures, with and without the im-
plementation of the Black-Litterman model. Con-
sistently throughout all three risk measures, the
portfolios perform better with the BL method with
higher annualized rates of returns, higher Sharpe
ratio, and lower standard deviations.

For CVaR, the Sharpe ratio of the CVaR port-
folio raises from 1.4414 to 1.6648, while the annu-
alized standard deviation decreases from 0.7292 to
0.7269 after using the BL method. This implies
that the CVaR portfolio constructed with the help
of the Black-Litterman method enhances the re-
turn while slightly lowering the risk.
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Table 2: Comparing Performance between Port-
folios with and without Using Black-Litterman
Method

Panel A
Variance CVaR Factor

RoR 0.2679 0.2727 0.2759
Std deviation 0.7280 0.7292 0.7294
Sharpe ratio 1.4602 1.4414 1.4428

Panel B
Variance CVaR Factor

RoR 0.3308 0.3181 0.2874
Std deviation 0.7270 0.7269 0.7238
Sharpe ratio 1.7127 1.6648 1.6870

Panel A reports the results without using the Black-Litterman
Method; Panel B reports the three metrics with the BL method.
The three metrics are the annualized rate of return, the annualized
standard deviation and the annualized Sharpe ratio of portfolios.

The same improvement on performance happens
on the covariance matrix portfolio and the factor
model covariance matrix portfolio as the returns
on these portfolios increases while their associated
risks reduce. In all, during our trading period,
using Black-Litterman method with analyst fore-
casts to build market view significantly enhances
the performance of our portfolios.

Comparing the performance of portfolios with
the three risk measures, without the construction
of BL model, factor model covariance portfolio
yields the highest rate of return of 0.2759 with a
slightly higher standard deviation of 0.7279. The
fact that the factor model covariance portfolio per-
forms the best follows our expectation given that
we hold the portfolio during 2016-2018. In addi-
tion, the outputs are consistent to the results in
our first project, which shows that without the BL
model variance is the least satisfying risk measure
across time periods and CVaR is the best perform-
ing metric during the economic downturns.

Under the implementation of the BL method,
the performance of the variance portfolio sees the
most improvement with respect to RoR and Sharpe
Ratio amongst the three risk measures. It is in-
tuitive since variance purely relies on the histor-
ical data in contrast to the other two risk mea-
sures. Therefore, using Black-Litterman to gener-
ate the expected return vector greatly reduces its
dependency on historical returns, which often pro-

vides unstable inputs to the Markowitz optimiza-
tion model. Furthermore, variance is the risk mea-
sure that has the highest rate of return of 0.3308
and a Sharpe ratio of 1.6870 with the lowest stan-
dard deviation of 0.7270. Therefore, if an investor
has specific perceptions of the markets, variance
should be preferred among the three risk measures.

8 Conclusion
The Black-Litterman model provides a powerful

tool for investors who possess their own views and
has an advantage over many traditional asset allo-
cation models. The classical Markowitz portfolio
model is sensitive to inputs, and using historical
returns as the mean vector tends to yield unstable
portfolio allocations. In addition, historical returns
are not accurate indicators of how an asset will per-
form in the future, especially if the asset is very
volatile. Driven to examine the effectiveness of the
BL model, we select companies in the IT sector in
S&P 500 index and cross-examine the performance
of the models with different risk measures.

Based on the parameter-tuning outputs over the
period of 2010-2014, we found that the results
are worse when applying an unrestricted model.
A possible explanation is that the portfolio holds
more aggressive long and short positions in certain
stocks, and hence we have a more volatile and risky
portfolio. Therefore, given the tuning outputs, we
shed light on the fact that the classical Markowitz
model yields extreme weights that are not imple-
mentable and practical in real life.

After tuning the constraints and parameters over
the period of 2010-2014, we implement our con-
structed model over for 2014-2018 and provide
empirical evidence that incorporating investors
views into market views can significantly enhance
the portfolio returns across the three risk mea-
sures. Furthermore, by comparing the performance
among the variance, expected shortfall and fac-
tor model covariance matrix portfolios, the model
with variance as the risk measure yields the highest
Sharpe ratio, largest returns, and lowest standard
deviation, which suggests the outperformance of
variance as a risk measure under the implementa-
tion of the Black-Litterman model.

Our empirical analyses yield similar results to
other research papers. Becker and Gürtler (2010)
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found that all applications of Black-Litterman had
achieved good rankings in all performance mea-
sures. Bessler et al. (2017) showed that the Black-
Litterman model outperformed minimum variance
model and naively diversified portfolios, particu-
larly during recessionary periods. Moreover, Zou
and Song (2011) proved that Black-Litterman and
resampling techniques help generate better allo-
cations as compared to the traditional Markowitz
method.

When conducting literature research, we found
that a study used analysts’ forecasts on dividends
to build views based on the dividend discount
model (Becker and Gürtler, 2010). They obtained
the data from Thomson Financial Datastream,
but unfortunately, we did not find the informa-
tion available on Bloomberg; they also generated
views using Monte-Carlo simulation for compari-
son. Hence, one potential extension for the paper
is to use dividends and Monte-Carlo simulation to
obtain investors’ views and then compare the ef-
fectiveness of the different approaches to generate
views.

Since our paper mainly focuses on the companies
listed in the S&P 500 IT sector and they tend to
have a high level of co-movement, it would be in-
teresting to examine the portfolio performance in
different sectors as well. Thus, another extension
to our project is the inclusion of a broader range of
stocks in different and longer time-horizon. Also,
examining international and more geographically
dispersed stock markets can help enhance the un-
derstanding and implementation of the BL model.

For the application of the Black-Litterman
model, investors’ views on the expected returns
are essential for balancing market weights. Since
analysts do not make their views and forecasts
in the way BL model expects, our paper con-
tributes to the quantitative implementation of the
BL model by generating views based on analysts’
recommendations and the corresponding one-year
target price. The confidence in specified views is
determined by the number of analysts’ views and
the disparity in the recommendations of each asset.

Based on our empirical analyses, the Black-
Litterman model avoids the extreme corner so-
lutions that are suggested by the Markowitz ap-
proach and provides the investors with more diver-

sified asset allocation. Therefore, we confirm the
results from previous literature and provide addi-
tional evidence that the BL model is more robust
towards unstable inputs to the Markowitz model
with respect to the three risk measures. This sug-
gests that the Black-Litterman model should be
more widely accepted and applied in the financial
industry for portfolio management.
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